Tue, 21 May 2013 12:45:00 GMT | By ANI

Cancer radiation therapy may minimize hair loss

A new study reveals that giving radiation therapy to cancer patients in the evenings may reduce their hair loss to 17 percent.


Cancer radiation therapy may minimize hair loss (© Rex Features)

Washington: Researchers who discovered that mouse hair has a circadian clock - a 24-hour cycle of growth followed by restorative repair - suspect that hair loss in humans from toxic cancer radiotherapy and chemotherapy might be minimized if these treatments are given late in the day.

The study found that mice lost 85 percent of their hair if they received radiation therapy in the morning, compared to a 17 percent loss when treatment occurred in the evening.

The researchers, from Salk Institute for Biological Studies, the University of Southern California (USC) and the University of California, Irvine (UCI), worked out the precise timing of the hair circadian clock, and also uncovered the biology behind the clockwork - the molecules that tells hair when to grow and when to repair damage. They then tested the clock using radiotherapy.

"These findings are particularly exciting because they present a significant step towards developing new radiation therapy protocols that include minimizing negative side effects on normal tissues, such as hair or bone marrow, while maintaining the desired effects on cancer cells," said Maksim Plikus, assistant professor of developmental and cell biology at UCI and the study's first author.

"We will now apply our findings to design novel circadian rhythm-based approaches to cancer therapy," Plikus asserted.

The scientists can't say their findings will directly translate to human cancer therapy because they haven't yet studied that possibility. But they say it is becoming increasingly clear that body organs and tissues have their own circadian clocks that, when understood, could be used to time drug therapy for maximum benefit.

"There are clocks everywhere in the body - clocks that have their own unique rhythm that, we found, have little to do with the central clock in our brains," said the study's co-lead investigator, Satchidananda Panda, an associate professor in Salk's Regulatory Biology Laboratory and an expert on circadian rhythm.

"This suggests that delivering a drug to an organ while it is largely inactive is not a good idea. You could do more damage to the organ than when it is awake, repairing and restoring itself," added Panda.

The study appeared in the early online edition of the Proceedings of the National Academy of Sciences.

MSN Mobile Lifestyle